Числа – виды, понятия и операции

Автор статьи
06 июня 2014

Число – фундаментальное понятие математики, служащее для определения количественной характеристики, нумерации, сравнения объектов и их частей. К числам применимы различные арифметические операции: сложение, вычитание, умножение, деление, возведение в степень и другие.

Числа, участвующие в операции, называются операндами. В зависимости от производимого действия, они получают различные наименования. В общем случае схему операции можно представить следующим образом: <операнд1> <знак операции> <операнд2> = <результат>.

В операции деления первый операнд называется делимым (так называется число, которое делят). Второй (на которое делят) – делитель, а результат – частное (оно показывает, во сколько раз делимое больше делителя).

Виды чисел

В операции деления могут участвовать различные числа. Результат деления может быть целым или дробным. В математике существуют следующие виды чисел:

  • Натуральные – числа, используемые при счёте. Среди них выделяется подмножество простых чисел, имеющих всего два делителя: единицу и самого себя. Все остальные, кроме 1, называются составными и имеют более двух делителей (примеры простых чисел: 2, 5, 7, 11, 13, 17, 19 и т.д.);
  • Целые – множество, состоящее их отрицательных, положительных чисел и нуля. При делении одного целого числа на другое, частное может быть целым, либо вещественным (дробным). Среди них можно выделить подмножество совершенных чисел – равных сумме всех своих делителей (включая 1), кроме самого себя. Древним грекам было известно только четыре совершенных числа. Последовательность совершенных чисел: 6, 28, 496, 8128, 33550336… До сих пор не известно ни одного нечётного совершенного числа;
  • Рациональные – представимые в виде дроби a/b, где а – числитель, а b – знаменатель (частное таких чисел обычно не вычисляется);
  • Действительные (вещественные) – содержащие целую и дробную часть. Множество включает рациональные и иррациональные числа (представимые в виде непериодической бесконечной десятичной дроби). Частное таких чисел, как правило, представляет собой вещественное значение.

Интересные факты

Существует несколько особенностей, связанных с выполнением арифметического действия – деления. Их понимание важно для получения правильного результата:

  • Делить на ноль нельзя (в математике данная операция не имеет смысла);
  • Целочисленное деление – операция, в результате которой вычисляется только целая часть (дробная при этом отбрасывается);
  • Вычисление остатка от целочисленного деления позволяет получить в качестве результата целое число, оставшееся после завершения операции (например, при делении 17 на 2 целая часть равна 8, остаток – 1).


Статистика за месяц:

Добавлено статей: 25
Добавлено вопросов: 18